Cost Effective IV&V Planning Activity derived from Experiences on JAXA’s Spacecraft Projects

ADCSS2008@ESTEC
Session: The ISVV Process Improvement
Topic: Improvement/revision to the ISVV process as defined in the ESA ISVV Guide

Tsutomu MATSUMOTO*1, Shinsuke MATSUMOTO*2
Hidetake UWANO*2, Akito MONDEN*2, Yuko MIYAMOTO*1
Shogo UJIHARA*1, Naohiko KOHTAKE*1, Masa KATAHIRA*1
*1 Japan Aerospace Exploration Agency (JAXA)
*2 Nara Institute of Science and Technology (NAIST)

31 October, 2008
Contents

- Current IV&V in JAXA
- Overview of Research
- Specific Question of Cost Effective IV&V
- Cost Effective IV&V Planning Activity
 - IV&V Planning Tool
 - Effectiveness Measurement
 - Summary and Future Work
- Empirical Evaluation Based on Defect History
 - Goal and Hypotheses
 - Proposal Method
 - Case Study
 - Summary and Future Work
Current IV&V in JAXA

- Current Situation
 - Increase in IV&V needs from various projects
 - **Effective IV&V** should be tailored and performed for each project
 - Limitation of IV&V engineer, budget and schedule
 - **Effective IV&V management** should be applied
 - Increase in system and software complexity
 - **Effective IV&V techniques** should be developed and applied
Overview of Research

● Goal of Cost Effective IV&V
 ● Rationale for IV&V planning as best solution
 ● Selecting appropriate combination of IV&V techniques to achieve cost effectiveness:
 ▪ Risk reduction
 ▪ Cost performance

● Research Activity
 ● IV&V planning method based on experiences
 ● Empirical evaluation of IV&V techniques
 (collaborative project with NAIST)
Overview of Research

- IV&V techniques and combination

Selection (Depth)
- Full set
- Phases
 - Simulation
 - Modeling/Model Checking
 - Auto Test Case Generation & Robustness Evaluation
 - Test Case & Test Result Review
 - Hazard Analysis/SFMEA
 - Auto Equivalency Check
 - Manual Check (Tools Support)
 - Static analysis (Problem Reports)
 - In line Process Monitor (SMIP)
 - Methodologies

Completeness/Consistency
- Design Coverage & Timing
- Interface Validation
- Verification Coverage
- Risk Analysis (Robustness)
- Compliance/Traceability
- Process & Quality

IV&V Attributes (Sample)
Specific Question of Cost Effective IV&V

- Question

How to effectively feedback the experiences to the following IV&V activities

- Cost Effective IV&V database
- IV&V Planning based on experiences
- Implementation of IV&V for each project according to the plan
- Empirical Evaluation of IV&V techniques

Collaborative project with NAIST

31 October 2008

ADCSS 2008
Cost Effective IV&V Planning Activity

• Motivation
 To perform IV&V by small group with low cost

• Proposed Solution
 To select appropriate combination of IV&V techniques for each project along a certain guideline

• Research Activity
 • Development of IV&V Planning Tool
 • Effectiveness Measurement of IV&V techniques
IV&V Planning Tool

- **Planning concept**
 - 1st Round: planning at concept design phase
 - Estimation of cost, expected risk, risk-reduction
 - 2nd Round: planning after S/W development start
 - Selection of appropriate IV&V techniques

- **Development of IV&V Planning Tool**
 - Input: e.g. system characteristics, project budget
 - Output: e.g. risk size, risk probability, cost
 - Needs to be improved:
 - accuracy of effectiveness estimation
IV&V Planning Tool

Strategic IVV Planning Tool

<table>
<thead>
<tr>
<th>System Characteristics</th>
<th>IVV Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Type:</td>
<td>Source Data:</td>
</tr>
<tr>
<td>Required FT Degree:</td>
<td>Natural Language</td>
</tr>
<tr>
<td>Functional Type:</td>
<td>Dev. Phase for IVV:</td>
</tr>
<tr>
<td>Controlled Data Type:</td>
<td>Requirement</td>
</tr>
<tr>
<td>Action of Hazard:</td>
<td>Evaluation Time:</td>
</tr>
<tr>
<td>Hazard Control Type:</td>
<td>Enough</td>
</tr>
<tr>
<td>Architecture of Execution:</td>
<td>Enough</td>
</tr>
<tr>
<td>Sub Architecture Type:</td>
<td>Enough</td>
</tr>
<tr>
<td>Implementation:</td>
<td>Source Code:</td>
</tr>
<tr>
<td>Number of Components:</td>
<td>Open</td>
</tr>
<tr>
<td>Operation Results:</td>
<td>Electronic Doc.:</td>
</tr>
<tr>
<td>Reuse Parts:</td>
<td>Read Possible</td>
</tr>
<tr>
<td>Development Type:</td>
<td>Scale (Doc. Volume, LOC):</td>
</tr>
<tr>
<td></td>
<td>Much</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Budget: []</td>
</tr>
</tbody>
</table>

31 October 2008

ADCSS 2008
Effectiveness Measurement

- Measuring methods
 - Definition of metrics for each IV&V findings
 - e.g. priority, criticality, man-hours
 - Measured by both IV&V engineers and software development engineers
 - To improve the estimation accuracy by analyzing the difference between each values

- Current ongoing work
 - Trial measurement in some projects
Effectiveness Measurement

- Example: metrics in IV&V findings list
 - Measured by IV&V engineers for each finding
 - target function of the software
 - applied IV&V attribute and technique
 - man-hours to detect the finding
 - criticality and priority
 - Answer from software development engineers
 - criticality and priority

same measurement item
Summary and Future Work

- **Summary**
 - IV&V Planning Tool
 - Framework has been developed.
 - Estimation accuracy should be improved.
 - Effectiveness Measurement
 - Metrics has been defined.
 - Measurement will be put into practice.

- **Future Work**
 - Collect and analyze the IV&V process data
 - Feedback the result of empirical evaluation to Cost Effectiveness Database
Empirical Evaluation Based on Defect History

● Goal
 - Evaluate IV&V activities by analyzing detected defects

● Hypotheses
 - Good IV&V process can detect wide variety of defects
 - Good IV&V technique can detect “expected” defects
 - e.g. “traceability analysis” is expected to detect “inconsistency” between requirement spec. and design spec.
Approach

- Try to build the defect classification suitable for IV&V
- Identify expected defect classes for each IV&V technique (or perspective)
- Compare expected defects and actually detected defects on the classification map
Related work

- Orthogonal defect classification (ODC)*
 - Commonly used in enterprise software development.
 - Classification categories:
 - Function, Interface, Checking, Assignment, Timing/Serialization, Build/Package/Merge, Documentation, Algorithm
 - Categories are not independent enough
 - This makes classification more difficult
 - Classification depends on person
 - 30% of defects are often classified as “others”
 - “Verification bugs” and “validation bugs” are not separated

Our Proposal Method

- Two viewpoints
 - Function / Interface / Scenario
 - Verification / Validation

- Simple but easy-to-classify
- Evaluate both V&V activities
Expected Defects

- IV&V perspectives and expected defects

IV&V Perspectives
- Review based on Lessons & Learned
- Consistency between system req. and software req.
- Hazard analysis
- Interface review

Function	**Interface**	**Scenario**
Verification		
Validation		

31 October 2008 ADCSS 2008
Case Study

- Target Data
 - 49 defects detected by IV&V activities conducted in a software req. analysis phase of a satellite system

- We compared expected defects and actually detected defects in each IV&V perspective
“Hazard analysis” detected “interface-verification” defects while it is expected to detect validation defects.

These defects might be overlooked in “interface review.”

- Review based on Lessons & Learned
- Consistency between system req. and software req.
- Hazard analysis
- Interface review

Function	Interface	Scenario
Verification		
Validation

31 October 2008

ADCSS 2008
Result 2

- “Model checking” detected “validation defects” as well as “verification defects”
- Validation problems were found during model construction

![Diagram showing validation and verification processes with Model checking and Document review marked as cross marks.]

31 October 2008

ADCSS 2008
Summary and Future Work

● Summary
 ● We have built a defect classification to evaluate IV&V activities

● Future Work
 ● Seek for a better defect classification
 ● Compare detected defects among different IV&V phases (req. analysis, design, coding …) or among different systems